Pulsed 'H Nuclear Magnetic Resonance Studies of Molecular Motion and Plastic Crystallinity in Dodecamethylcyclohexasilane

By DAVID W. LARSEN,^a BARBARA A. SOLTZ,^a FRANK E. STARY,^b and ROBERT WEST^c

(*Department of Chemistry, University of Missouri–St. Louis, St. Louis, Missouri 63121; *Department of Chemistry, Maryville College, St. Louis, Missouri 63141; *Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706)

Summary Dodecamethylcyclohexasilane exhibits plastic crystalline behaviour from 77 to 253 °C, with molecular rotation taking place both in the crystalline (<77 °C) and plastic crystalline (>77 °C) phases; activation energies for various molecular motions are reported.

DODECAMETHYLCYCLOHEXASILANE $(Me_2Si)_6$ is important as a model compound and precursor to a variety of linear and cyclic polysilicon compounds.^{1,2} The properties of $(Me_2Si)_6$ and other permethylcyclopolysilanes show evidence for extensive electron delocalization, resembling that in aromatic substances.¹ We now find that $(Me_2Si)_6$ also shows unusual motional behaviour in the solid state.

Using the methods described in earlier papers^{3,4} we have measured ¹H n.m.r. relaxation times T_1 (spin lattice), T_{1p} (rotating frame spin lattice), T_{1D} (dipolar), and second moments (M_2) for $(Me_2Si)_6$; the relaxation data are presented in the Figure. A transition^{5,6} from the crystalline 'brittle' phase to an orientationally disordered 'plastic crystal'^{7,8} phase can clearly be seen at $10^3/T$ ca. 3 (ca. 75 °C) from the large discontinuous change in T_{1p} of greater than three orders of magnitude. Differential thermal analysis shows an endotherm corresponding to this transition at 77 \pm 1 °C, 176 °C below the normal m.p. of (Me₂Si)₆.

In the crystalline phase, at the lowest temperatures $(10^3/T>5)$, T_1 , T_{1p} , and T_{1D} increase with increasing temperature. These are portions of high temperature arms of relaxation minima, which we attribute to random reorientation of methyl groups about their C_3 axes. From the gradients of the linear portions below $10^3/T$ ca. 5, we estimate an activation barrier of 5 kJ mol⁻¹ for methyl reorientation. Between $10^3/T$ ca. 5 and the phase transition, contributions to all three relaxation times from a second motional process can be seen. These are portions of low temperature arms of relaxation minima. This second process is characterized by an activation barrier of 45 kJ mol⁻¹, and the motion results in a reduction of the

FIGURE. Log n.m.r. relaxation times vs. reciprocal temperature for solid dodecamethylcyclohexasilane.

second moment to ca. 1 G² just below the phase transition. Since it is known that (Me₂Si)₆ exists in a chair conformation,9 the second motion most likely involves reorientation about the three-fold molecular axis or reorientation about a six-fold molecular axis with participation from ring inversion.

In the plastic phase, T_1 appears to be controlled by molecular reorientation, and T_1 by two processes, molecular reorientation and self-diffusion. T_{1D} shows linear behaviour, decreasing with increasing temperature, and the n.m.r. line is observed to narrow further above ca. 130 °C. The T_{1D} behaviour in the plastic phase corresponds^{5,6} to the low temperature arm of the translational

diffusion minimum. From the gradient, we estimate an activation barrier of 100 kJ mol⁻¹ for the self-diffusion process.

Preliminary examination indicates that (Me₂Si)₅ also shows orientational disorder, undergoing transition to a plastic-crystalline phase at -39 °C, about 220 °C below its m.p. The temperature ranges over which plastic crystalline phases are stable for this compound and (Me₂Si)₆ are unusually large; among monocyclic compounds these appear to be the longest plastic crystalline ranges known.[†]

(Received, 14th August 1978; Com. 908.)

† Even longer plastic crystalline ranges have, however, been observed for polycyclic compounds, for example adamantane (247 °C) (H. A. Resing, *Mol. Cryst. Liq. Cryst.*, 1969, 9, 101) and norbornane (230 °C), (R. Folland, R. L. Jackson, J. H. Strange, and A. V. Chadwick, J. Phys. Chem. Solids, 1973, 34, 1713).

- ¹ R. West and E. Carberry, Science, 1975, 189, 179.
 ² S. Yajima, M. Omori, J. Hayashi, K. Okamura, T. Matsuzawa, and C. Liaw, Chem. Letters, 1976, 551.
 ³ D. W. Larsen and J. Y. Corey, J. Amer. Chem. Soc., 1977, 99, 1740.
 ⁴ D. W. Larsen and T. A. Smentkowski, J. Magnetic Resonance, 1977, 28, 171.
 ⁵ J. M. Chezeau, J. Dufourcq, and J. H. Strange, Mol. Phys., 1971, 20, 305.
 ⁶ A. V. Chadwick, J. M. Chezeau, R. Folland, J. W. Forrest, and J. H. Strange, J.C.S. Faraday I, 1975, 71, 1610.
 ⁷ J. Timmermans, J. Chim. phys., 1938, 35, 331; J. Phys. Chem. Solids, 1961, 18, 1.
 ⁸ J. G. Aston, 'Physics and Chemistry of the Organic Solid State,' eds. D. Fox, M. Lages, and A. Weissberger, Vol. 1, Interscience, New York, 1963, p. 543.
 ⁹ H. L. Carrell and I. Donahue. Acta. Crust. 1979, R28, 1566.

⁹ H. L. Carrell and J. Donahue, Acta. Cryst., 1972, B28, 1566.